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IN A FROZEN SOIL LAYER 
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A determination is made of the maximum possible pressure in a water bubble located 
in the nonuniform temperature field of surrounding frozen soil which becomes per- 
meable as it melts. The principles found are used to explain a number of natural 
processes. 

During industrial exploitation of petroleum and natural gas sites, long vertical 
channels are placed in the earth, for example, the annular spaces between a casing and the 
walls of the well. Such spaces cannot always be filled with solid matter for technical or 
economic reasons, and they become filled with water. In Soviet near eastern regions this 
water freezes, primarily in segments which border the coldest layers of the frozen depths, 
and in winter, also at the boundary with the atmosphere. As a result a long closed volume 
of water is formed in the channel, which can generate a pressure high enough to damage ad- 
jacent construction, for example, the well pipe. 

The nonuniform temperature distribution of the medium surrounding the water bubble does 
not always allow use of known methods to determine the pressure within the bubble [i, 2], 
since under certain conditions walls formed by regions of sandy soil allow loss of hermetic 
sealing. In fact, because of rapid temperature equalization within the bubble, the water 
in it freezes only in those segments opposite which the temperatures of the surrounding me- 
dium are the lowest, while at points where the temperature of the surrounding medium is 
higher, pore ice melts under the water pressure within the bubble. A special case was con- 
sidered in [3] with the assumption that the bubble occupies a planar slot, while in practice 
the case of annular slots bounded on the inside by the well pipe and on the outside by the 
frozen soil is no less important. Water pressure in such slots is created by winter growth 
of the ice mass coating the upper orifice. The lower end of the bubble rests on a cement 
ring or an ice mass fdrmed in the warm period of the year. Pressure release in the bubble 
occurs because of melting of pore ice in sandy (or suspensionlike) strata, as well as 
thawing of the lower ice mass if such exists. These two cases differ from each other in the 
geometry of thermal flux propagation (plane-radial and plane-parallel, respectively), and will 
be considered separately. The conclusions obtained by solving the second problem will be 
used to explain experimentally observed phenomena, the mechanisms of which are yet to be well 
defined. AMong these are migration of clay particles in ice in the direction of increasing 
temperature [4] and water flow through ice plates [5]. 

i. For quantitative study of the effect of pressure release in an annular water bubble 
by thawing of pore ice in sandy strata (Fig. i) we assume the net capacity of the strata is 
h, the mean porosity of the thawed portion is m, and that the annular gap rests below on a 
cement cup. It is limited on the inside by a column of radius rc, and on the outside by 
the wall with radius r w. Thus its cross sectional area is equal to A = ~(r~--r~). Pressure 

is created within the bubble by growth in the ice mass at the surface of the earth, the 
thickness of which at time t is equal to s The temperature on the surface is equal to 
To, and the initial temperature of the permeable sandy strata i sT i. The current temperature 
value in the water bubble is T m and the corresponding equilibrium pressure depends on time, 

while T o < Tm < T i. 

For simplicity we will assume that the water in the annular gap and the thawed portion 
of the stratum r w ! r ! rm(t) have identical temperatures. This simplification leads to 
some reduction in pressure in the gap due to neglect of filtration resistance. However if 
in this formulation it can be shown that warping of the column is possible, the situation 
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Fig. i. Diagram of annular slit 
surrounding well in frozen soil: I) 
water in annular gap and thawed por- 
tion of stratum; 2) frozen portion 
of porous stratum; 3) ice mass; 4) 
cement column or lower ice mass; 5) 
surface of earth; 6) well axis. 

will be more severe when this assumption is eliminated. 

The rate of motion of the ice-water boundary rm(t) in the stratum is determined simul- 
taneously by the quantity of water entering it from the annular reservoir and the intensity 
of heat flux to the front from the exterior (r m ! r < =) region of the stratum. 

The first of these conditions is expressed by the equation 

A dl =2~hm r , 
dt ~ 

while the second is given by 

%( r OT = P i L m (  r dr (2) 

With no great error it can be assumed that the temperature distribution in the ice mass 
is quasisteady state, whereupon the current thickness of the mass ~(t) and the water tempera- 
ture in the annular gap T m are related by the thermal balance condition 

%i Tin--To =9,iL dl_~_ (3) 
l dt 

These three conditions permit definition of the three unknown quantities appearing therein: 
r m, s and Tm, if we can find the temperature distribution in the frozen portion of the 
stratum rm ! r < ~, the thermal conductivity and diffusivity of which are equal to ~ and ~, 
respectively. ~he temperature field in the stratum can be determined using a fictitious 
direct acting heat source with unknown intensity q(t) located at the origin of the coordi- 
nate system r = O: 

/ 1,2 ) du (4) 
Y(r, t )=T  i - . t '  q~(l-u) exp~ 4czu ' u 

0 

To eliminate the additional unknown function q1(t) we have the condition 

/ 2 

T, - -T~ =  f q ' ( t -u )  exp( rm ~ du (5) 
4~u ] u 

Introducing the dimensionless variables 
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T -  ~ i t  rm 1 )~i 
2 ; ~ l - -  ; X - -  ; q ( ' c ) - -  - -  ql( t )  

r w r w r w ~ i 9 i  L 

and parameters 

2 2 
-- rw-- % . ~i K = ~ (Ti To) m~,i. 

o~igiL ; M =  2hmr w , N = ~ ,  ~ =  o; ' 

after eliminating T m from Eqs. (2)-(5), for determination of the three remaining unknowns 
x, q and q(T) we obtain the following system of three equations: 

K = x  d'r o 4a  a ' ( 6 )  

M N  dx 1 ~ ( ~ l  ~ ~ da 
d'c = -2- [~z ]" q (~c - -  a) exp - -  40 I a~ ' ( 7 )  

fl 

~1 z = 1 + 2 M x .  ( 8 )  

This system of integrodifferential equations is analogous to that found in calculation of 
underground gas reservoirs and horizontal aquifers, and can be solved by the method developed 
by Charnyi [6], consisting of the following. Let T take on discrete values on a uniform grid, 
with Xk, ~k being the values of the corresponding functions at the point ~k, while qk is 
the mean value of the function q(~) in the interval (~k-l, Tk)- Then, using the theorem of 
the mean to calculate the integrals in Eqs. (6), (7) in each of the intervals and replacing 
the derivatives on the left sides of the expressions by finite differences, we obtain: 

2 [~Tin_  1 ~ T l n _  1 , 1 x ] - -  x,,_l _ qn-k+l  E l  - - E l  ~ -  , 

= ~n~-~ ~nn-~ l l _ M  N x . - - x . _ l  qn--h+l Eo , - - E o  , ; 
2 T n - -  T n - -  1 n =  1 4z'k 4Tk_ 1 

2 
~ln = 1 + 2Mx~,  

where for brevity we have introduced the notation 

E ~ ( x ) = . i e - ~  dx 
X n 

x 

For n = 1 only one term containing ql as a factor remains. Since x 0 = i, ~0 = I the 
system rapidly gives x I and ql. We will now assume that x k, nk, qk are defined for all 
k ! n - I. Then the unknowns Xn, qn are again determined from the system by the same method. 

Results of solving system (6)-(8) are presented in Fig. 2. Three different values were 
chosen for the parameter M, which defines the ratio of the ice mass face area to the area of 
the sandy stratum filtration surface on the well wall: M = i, 0.i, 0.01. The parameters 
K, N, ~ were not varied and their values corresponded to mean northern Tyumen' region condi- 
tions: K = 0.i, N = 0.3, ~ = 0.7. As is evident from Fig. 2, with decrease in M there is 
an insignificant increase in the rate of growth of the ice mass and simultaneous abrupt in- 
crease in the parameter 8 = (T m - T0)/(Ti - To). Thus, the larger the sandy stratum input 
filtration surface, the closer the final temperature in the gap will be to its initial 
value. The maximum calculated pressures are observed at the very start of the process, al- 
though from a practical viewpoint they are not dangerous, since they usually lead to breakage 
of the ice mass rather than distortion of the wall pipe. 

Thus, if pressure growth occurs in a vertical channel its maximum value should be deter- 
mined from the temperature of the permeable stratum of highest power. This conclusion 
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Fig. 2. Dynamics of increase in thickness of ice 
mass x (a) and relative dimensionless temperature 
8 in annular gap (b) for various ratios of gap 
area to input surface of porous stratum, defined 
by parameter M: i) M = 0.01; 2) 0.I; 3) i. 

corresponds completely with that made previously in [3] with simplifying assumptions. 

The temperature of the frozen depths in the north of western Siberia gradually decreases 
with movement upward from below and the minimum constant value is reached near the neutral 
layer. Above this layer it oscillates about this constant level depending on the season. 
If the equilibrium pressure for the temperature of the neutral layer is higher in value than 
that required to distort the pipe, and moreover the throat of the well is covered by an ice 
mass before the onset of winter cold, then the pipe can be damaged even in the presence of 
sandy layers. Oh the other hand, if this seal does not exist, then the pressure can be 
released into some porous stratum near the base of the frozen layer where the temperature 
is close to 0~ 

2. We will assume that the annular gap is supported at its bottom not by a cement cup, 
but by an ice mass. Upon increase in pressure in the gap the mass will melt from its upper 
face, introducing another contribution to pressure release. In order to estimate the value 
of this contribution, we will assume that the lateral walls of the gap are coated by adia- 
batic and impermeable barrier, as a result of which the problem becomes planar. 

To solve this problem we direct the x-axis vertically downward, taking as the origin 
the point on the earth's surface where at time t = 0 a cons[ant negative temperature T o is 
established, much lower than the phase transition temperature for water. Moreover, let T i 
be the initial temperature of the lower ice mass. If the latter has sufficient thickness 
it can be considered infinite with no great error. In the process of freezing the lower face 
of the upper ice mass Xm(t) will increase, the pressure Pm developed in a water layer of 
thickness 6 is transferred to the upper face of the lower mass Xs(t) , decreasing the melting 
point of the adjacent ice layer. Thus, in both the water and the faces of the two ice masses 
facing each other a temperature T m is established, which is in equilibrium with the pressure 
in the water layer Pm" In view of the low compressibility of water the thickness of this 
layer practically always remains constant. 

The temperature field in the upper and lower masses T1(x, t) and T2(x , t) can be 
represented in the form: 

Tm -- T~ 1 -- erf x / x~ 
T~ - -  To 2 "I/~--t - - / e r r  2 -V~J  ; ( 9 )  

T~Tm--__TmTi = - -  1 + cerf - ~ ~--~-T t cerf 2 ]/~-~-- ' ( 10 ) 

while thermal balance on the moving faces of the ice masses is represented by the equations: 

c9T1 dxm . x = xs ( t ) ;  %i OT2 dx~ 
x = xm(O; )~ Ox - -  piL O---/-' Ox - -  PiL d--T- 

Taking x m = 2a/~-~, x s = 6 + 2a/~it, where a is a constant but unknown quantity, we 
obtain from Eqs. (9), (i0) the following equations: 
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] /~aexp (a2 )e r fa :K  T m - - T o .  
T , - - T o  ' (11) 

]/-~aexp(a~)cer[a = K T~--Tm (12) 
T~ --  To 

These serve to determine the temperature in the water layer T m and the parameter a, and to- 
gether with the latter, the law of downward motion of the water layer. To find the latter by 
addition of Eqs. (ii) and (12) we obtain the simple expression 

-[/~a exp (~) = K. ( 13 ) 

In the processes under study K % 0.I, and for such small values with only slight error 
from Eq. (13), and then from Eq. (ii), we have 

a,,~K/]/-~; Tin--To __"~ __2 K. (14) 
Ti - -  To 

From this last expression it is evident that in the range of the parameter K studied 
the temperature in the water bubble differs little from the air temperature, and thus, fusion 
of the lower ice mass at its upper face has practically no effect on the water pressure in 
the annular gap. 

This problem is of interest because it permits a new approach to some physical phenomena. 

We will use Eq. (14) to evaluate the speed of the water bubble motion. For ice we take 
Pi = 0"917"103 kg/m3, L = 334.5"103 J/kg, li = 2.213 W/(m'K), ~ = 1.14"10 -6 m2/sec. Then 
for AT = Ti-T 0 = 10=C we obtain K = 6.329"10 -2 , a = 3.575, so that over a day the bubble moves 
2.24 cm, over a month, 67.3 cm. It is important to note that this velocity does not depend 
on the length of the water bubble in the gap. Thus if in some manner or other we introduce 
into the thickness of an ice mass across the ends of which a temperature head AT = 10~ has 
been created a droplet of water, it will move in the direction of the higher temperature with 
approximately the same velocity as found above, with a necessary correction for the spatial 
character of heat transfer. However the qualitative picture is also produced by our simpli- 
fied formulation. 

A water droplet can be naturally frozen into ice if the drop contains a clay particle. 
For a long period it remains immobile until the adsorption pressure in the layer of weakly 
bound water equals the pressure in equilibrium with the temperature at the point where the 
particle is located. As soon as the outer layers of the water begin to freeze the droplet 
displaces, following the isotherm corresponding of adsorption pressure. Thus the ice is 
spontaneously purified of initially frozen clay particles, as was observed in the experiments 
of [4], but not explained. 

The results obtained herein permit explanation of another phenomenon which Miller [5] 
termed the sandwich-effect. 

We will first assume that within the framework of the problem considered above the 
pressure on the water bubble is created by a piston. Then the ice begins to melt as soon 
as the ice pressure exceeds the equilibrium value for itsinitial temperature. The heat re- 
quired for ice fusion is obtained from the depths of the ice mass. Let the latter have a 
finite thickness and be supported below by a layer of water in which no pressure is created. 
Then the heat from fusion of the upper face of the ice mass will be removed below the lower 
face. As a result the ice mass will begin to grow on the bottom, driving back the water 
layer located below it. Thus a water flow is created in the system although it is divided 
into two parts by an impermeable ice mass. 

Miller observed this phenomenon in a chamber which was divided into two halves by an 
ice plate held between two metallic grids. The water in the chamber was cooled to -(0.07- 
0.15)0C, and when pressure was created in one half, the level increased in the other. Thus, 
at a pressure of 1.306 bar (980 mm Hg) the water flow rate through the ice seal comprised 
0.555 cm/sec according to Miller's data. It is obvious that this velocity is only an apparent 
one and the water flow will only continue while the ice seal covers the space between the 
grids. 
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NOTATION 

r, radial distance from well axis; rc, rw, radii of column and well; rm, radius at which 
melting phase transition occurs; h, m, thickness and porosity of stratum; s thickness of ice 
mass; t, time; %i and ~i, % and ~, thermal conductivities and diffusivities of ice and 
porous stratum; Pi, L, density and heat of fusion of ice; To, T i, T m, temperature of earth's 
surface, porous stratum, and water bubble; q1(t) and q(~), intensity of fictitious heat source, 
dimensioned and dimensionless; T, N, x, dimensionless time, thawing radius, and thickness of 
ice mass; K, M, N, 8, a, dimensionless parameters; u, o, integration variables; 6, length of 
water bubble; Xm(t), Xs(t), coordinates limiting bubble. 
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FINITE-DIFFERENCE SOLUTION OF THE OPTIMIZATION PROBLEM 

IN HIGH-SPEED HEATING OF A BODY OF SIMPLE SHAPE BY 

INTERNAL HEAT SOURCES 

A. V. Kostenko and M. B. Viter UDC 536.12:517.977.56 

A method is proposed for construction of optimal fast-response control of body 
heating under constraints on the control (internal heat sources) and the temperature 
field or stress-strain parameters. 

Body heating by internal heat sources occurs in modern technological processes, for 
instance, the induction heating of articles by high-frequency currents [i], in heat ex- 
changer elements [2], in chemical and nuclear reactions [3], etc. Among analogous processes 
can also be the heating of thin-walled elements during convective heat transfer since in this 
case the temperature of the external medium is in the right side of the heat-conduction equa- 
tions [4]. 

The optimization of body heating relative to fast-response is of directpractical 
interest to raise the productivity of heater plants [5]. In connection with the limited 
power of the installation, here, as well as taking into account the requirement of material 
strength and possibilities of intensive fusion, oxidation, phase microstructure transforma- 
tion and other phenomena that take place at high temperatures in metals and many materials, 
constraints are imposed on the control actions, the thermal process parameters, and the stress- 
strain state [6]. 

Let us consider the problem of constructing an optimal fast-response control of the 
heating of homogeneous or inhomogeneous plates, hollow cylinders and spheres by internal heat 
sources under constraints on the control, the body temperature, the temperature drop, and 
the thermoelastic stresses in the body. 

Heating in the above-mentioned bodies is described by the following boundary-value 
problems: 
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